
Abstract

Billions of chickens in the egg industry suffer from poor welfare throughout their lives. Male chicks, considered a byproduct of commercial hatcheries, are killed soon after they hatch. The females are typically beak-trimmed, usually with a hot blade, to prevent them from developing the abnormal pecking behaviors that manifest in substandard environments. The overwhelming majority of hens are then confined in barren battery cages, enclosures so small that the birds are unable even to spread their wings without touching the cage sides or other hens. Battery cages prevent nearly all normal behavior, including nesting, perching, and dustbathing, all of which are critically important to the hen, as well as deny the birds normal movement to such an extent that the hens may suffer from physical ailments, including osteoporosis and reproductive and liver problems. Once their productivity wanes, typically after 1-2 years, the hens are “depopulated,” and many experience broken bones as they are removed from the cages. The birds are either killed by gassing on the farm or after long-distance transport to a slaughter plant, where they experience further stress and trauma associated with shackling, electrical water-bath stunning, and throat-cutting. Throughout the commercial egg industry, the welfare of birds is severely impaired.

Introduction

Globally in 2009, nearly 1.2 trillion table eggs were produced by approximately 6.3 billion hens.¹ There are no reliable assessments of the percentage of laying hens confined in battery cages worldwide. The International Egg Commission (IEC) estimates that 85% egg production comes from caged systems.² However this figure does not always include backyard egg production,³ which can be significant in many developing countries.¹ The IEC reports 100% percent of commercial production in India and Brazil is caged.⁵ However, a number of retail outlets in both countries have adopted cage-free procurement policies, and purchase their eggs exclusively from commercial-scale cage-free egg producers.⁶,⁷,⁸ Still, it is clear that an increasing number of producers around the world are turning to intensive, industrial farm animal production (IFAP) systems, which now account for about two-thirds of egg and poultry production.⁹ The most commonly used cages hold 5-10 birds.¹⁰

A typical egg farm contains thousands of cages, lined in multiple rows, stacked 3-5 tiers high. Industry guidelines stipulate that each caged hen may be afforded 432.3 cm² (67 in²) per bird,¹¹,¹² an amount of floor space equivalent to less than a single sheet of letter-sized paper.

Hatching

Chickens destined for the egg industry are artificially incubated and hatched by the thousands at commercial hatcheries. Male chicks will not mature to lay eggs and since they are not selectively bred for rapid growth and increased breast muscle (meat) as those in the broiler chicken meat industry, there is no market demand for them. As such, male chicks are considered a byproduct of egg production and are customarily killed upon hatching. In the United States, 260 million chicks are killed by the commercial egg industry annually.¹³ Methods of chick disposal include maceration (wherein live, fully conscious, and unanesthetized chicks are inserted into high-speed grinders); exposure to carbon dioxide, argon, or a mixture of the two gases; or by use of a high-speed vacuum system that sucks chicks through a series of pipes to an electrified “kill plate.”¹⁴,¹⁵,¹⁶ Although there is little published research establishing that the vacuum system is effective
and it is highly likely that the chicks experience considerable distress before they are killed, the majority of male chicks die by this method.17

Beak-Trimming

Many laying hens are beak-trimmed as young chicks18 in order to prevent potential outbreaks of injurious feather-pecking and cannibalistic behavior that can result from such intensive confinement in barren conditions, as well as to reduce feed wastage of adult birds. Beak-trimming generally involves removing 1/3-1/2 of the beak tip,19,20 but in some cases, up to 2/321 may be cut off. The most common commercial method uses a heated blade both to cut and cauterize the beak tissue,22,23 but newer technologies include infrared energy and laser procedures.24,25,26 Beak-trimming using a hot blade causes tissue damage and nerve injury, including open wounds and bleeding, which results in inflammation, and acute and possibly chronic pain.27,28,29,30,31,32 Beak amputation can also result in the formation of a painful neuroma, a tangled nerve mass, in the healed stump of the beak,33,34,35 particularly if the procedure is delayed until the birds are older than five weeks of age or if a large, critical amount (2/3) of the beak is removed.36,37,38

The beak is a highly innervated, complex organ containing free nerve endings that serve as nociceptors (receptors for painful or injurious stimuli) and sensory receptors that are concentrated in the area around the tip of the beak, innervated by branches from the trigeminal nerve.39,40 Hence, beak-trimming removes many of the receptors important for touch, taste, pain, and temperature perception.

Chickens use their beaks to explore their surroundings. The beak is their primary means of touching and feeling, as well as picking up and manipulating objects, and chickens use their beaks in much the same way that we use our hands.41 Studies have shown that because birds need to adapt to a new beak form after this amputation procedure, their ability to consume feed is impaired following beak-trimming.42 Beak-trimmed chicks also exhibit difficulty in grasping and swallowing feed.43

Ian Duncan, Emeritus Chair in Animal Welfare at the University of Guelph, has asserted that “it is possible to keep hens without de-beaking them,”44 and animal scientists David Fraser, Joy Mench, and Suzanne Millman have referred to practices such as beak-trimming as “stop-gap measures masking basic inadequacies in environment or management.”45 Many factors present in today’s commercial egg production industry heighten the risk of injurious pecking behavior, but important among these is the lack of environmental stimulation in monotonous, barren environments that restrict or severely limit important behavior, such as natural foraging (ground-pecking) activities.46,47,48,49 Beak-trimming has been banned or is being phased out in some European countries including England, Norway, Finland, and Sweden,50,51 due to the pain the mutilation causes and because adjustments to the environment and management practices can be used to mitigate the risks of injurious pecking and cannibalism outbreaks.

Behavioral Restriction

Hens in battery cages cannot perform many of their important, natural behavior, including nesting, dustbathing, perching, and foraging. They are also so severely restricted in the movements they are able to perform that they suffer from physical abnormalities due to lack of exercise.

Nesting

Nesting behavior is so important to the laying hen that it is often used as a prime example of a behavioral need.52 Under natural conditions, approximately 90 minutes before oviposition (egg laying), a hen locates a remote, private place in which she carefully scrapes out a shallow hollow in the ground and builds a nest.53 Very similar behavior can be seen in non-cage husbandry systems for hens.54,55 Nesting behavior is triggered internally with a sudden rise in progesterone against a background of fairly high estrogen levels. This hormonal fluctuation, associated with ovulation, then results in nesting behavior approximately 24 hours later.56,57 The internal, biological signals to perform nest-site selection and nesting behavior occur no matter what the external environment.58 Studies have shown that hens are highly motivated to gain access to a nest site when they are about to lay an egg.59,60 Caged hens prior to oviposition are restless, show stereotypic pacing and escape behavior, or perform “vacuum” nesting activity, the expression of the motions of building a nest in the absence of appropriate nesting materials. Decades of scientific evidence suggest that hens are frustrated and distressed, and that they suffer in battery cages because there is no outlet for nesting behavior.61,62,63,64,65,66,67

Dustbathing

The absence of loose litter in a battery-cage environment is also behaviorally restrictive as hens are prevented from performing normal dustbathing behavior. Dustbathing keeps chickens’ feathers and skin in healthy condition. Given access to dry, friable substrate, such as dirt, wood shavings, or peat, hens would normally dustbathe approximately once every other day. During a dust-bath, the hen crouches, lies in, and rubs dust through her feathers before standing and shaking off the loose particles. The best experimental evidence suggests that the function of dustbathing is to balance lipid levels in the feathers.68,69,70 However, dustbathing is caused by a variety of factors, some of which are external71 and others internal.72,73 Light and heat trigger dustbathing, as does the presence of a friable, dusty substrate, but even when deprived of these normal eliciting stimuli, hens in battery cages will still try to dustbathe on the wire floor. Peripheral factors, emanating from the feathers (including ectoparasites), seem to be unimportant since even featherless chickens will dustbathe.74 Although there has been a report of dustbathing deprivation leading to stress,75 others have suggested that dustbathing is not driven by a need, but is a pleasurable activity.76 This does not lessen its importance, since good welfare is dependent on both an absence of suffering and a presence of pleasure.77

Perching and Roosting

Barren with wire mesh flooring, conventional battery cages also prevent hens from perching and roosting. Perching is another natural behavior of the hen. When given the opportunity, hens will normally roost high in the trees at night. The scientific literature suggests that the foot of a hen is “anatomically adapted to close around a perch”—that is, their feet evolved to clutch onto branches. Perch use is important for maintaining bone volume and bone strength.80,81,82 Perches can also serve as refuges for hens to avoid injury from more aggressive hens83 and will reduce agonistic interactions.84

In a naturalistic setting, roosting behavior is thought to function in protecting chickens from predation at night, but evolutionary history continues to drive the hen’s need to perform the behavior, even in the industrialized production environment. When perches are provided in cages, hens may spend 25-41\% of day time on them.85,86,87 though this may be the birds’ method of utilizing the extra space.85 Hens immediately begin to use perches when the lights go off at night, and in one study, within 10 minutes, more than 90\% of all hens were found on perches.89 When perch space is limited, hens will crowd together for roosting space at night.90 In motivational analysis experiments, hens show behavior indicative of frustration when thwarted from accessing a perch.31 They are also willing to push through an increasingly heavily weighted door for perch access.92 Thus, many studies conclude that hens are highly motivated to perch.93,94,95
Scratching and Foraging

The wire floor of a battery cage also deprives hens of the opportunity to express normal foraging and scratching behavior. Hens are behaviorally adapted to engage in these activities, which would normally take place in loose, varied ground cover. The birds scratch the earth in search of food and as a means of exploring the environment. Studies have reported that domestic fowl spend more than 50% of their active time foraging.96,97 Battery-caged hens are fed a concentrated diet, yet, like other animals in captivity, 98 their natural urge to forage remains strong despite the presence of a complete diet fed \textit{ad libitum}. Studies have shown that hens will choose to forage for feed on the ground in loose substrate rather than eat identical food freely available in a feeder.99,100 The lack of appropriate foraging substrate may lead to redirected pecking and development of abnormal feather-pecking behavior.101

Exercising

Hens in cages are so intensively confined that they have no opportunity to exercise and are not exposed to the normal range of physical forces that structure their bones. The scientific literature provides ample evidence that restriction of normal movement patterns to the extent found in cages causes physical harm in the form of bone weakness. Dynamic loading is a process that occurs during normal movements and causes stresses and strains to bone and muscle that keep the skeletal system healthy. The lack of exercise in cages leads to bone fragility and impaired bone strength.102,103,104,105 While all hens selectively bred for egg production are prone to skeletal weakness due to osteoporosis (see below), caged hens are more prone to the disease due to lack of exercise. Several studies have compared the bone strength of caged hens to those in perchery and deep-litter systems. Findings conclude a very significant reduction in bone strength in the birds in cages.106,107,108 This problem is so severe that in one study, 24% of birds removed from their cages at the end of the laying period suffered from broken bones.109

Preference testing has demonstrated that hens do prefer more space than is typically allotted to them in a conventional battery cage and that when given the opportunity to choose between enclosures that differ in size, they will generally choose the larger enclosure.110,111,112,113,114 Preference tests have also demonstrated that space \textit{per se} may not be as important as access to other resources, such as outdoor access or a littered or grass floor.115,116,117 Additionally, small spaces may temporarily be preferred for particular activities, such as nesting.118

Engaging in Comfort Behavior

Many studies have shown that comfort behavior, such as stretching, wing-flapping, body-shaking, and preening, are reduced or adversely affected in some way by the battery-cage environment.119,120,121,122 These types of behavior are important for body maintenance and care of the feathers. The social spacing in a typical battery cage is restrictive to the point that hens may perceive their environment as being too small to engage in comfort behavior. Therefore, even if it is physically possible to perform these simple movements, they may not.

Exploring

Hens are naturally inquisitive, curious animals. Scientists have argued that exploratory behavior is important to animals on several grounds: Exploration satisfies the motivation to acquire information about the surrounding environment, creates agency and competency, and is also an end in itself.123,124,125 Some have further argued that situations that deny environmental challenge (because they are barren and devoid of natural stimuli) deprive animals of “the very core on which their physical existence is based, namely the
Exploratory behavior may be independent of goal-directed behavior (e.g., searching for a suitable nest site or foraging for food), as chickens continue to display exploratory behavior even when the functional consequences of these behaviors (e.g., nest sites and nutritious food) are present. Exploratory behavior is likely a behavioral need.

The barren, restrictive environments of battery cages are detrimental to the psychological well-being of an animal. When environments are predictable, monotonous, and unchanging, they do not offer the degree of stimulation or opportunity for choice that would be found in natural environments. Scientists have suggested that environmental challenge is an integral part of animal well-being and that barren environments lacking challenge and stifling exploration engender apathy, frustration, and boredom.

Disease

Today’s laying hen, selectively bred for high egg production, produces more than 250 eggs annually, compared to 100 eggs per year a century ago. The red jungle fowl, the presumed wild ancestor of today’s commercial breeds, lays only 10-15 eggs annually.

The unnaturally high rate of lay of commercially raised egg-laying hens, sustained for a year or more, takes a toll on the health of the hen and can lead to abnormalities of the reproductive tract and metabolic disorders such as osteoporosis and accompanying bone weakness. As caged hens are unable to exercise, problems with skeletal fragility are exacerbated, and the birds may also suffer from cage layer fatigue and liver problems.

Reproductive Problems

Consumer demand is greatest for the extra-large and large egg sizes. The production of these eggs by small birds is one factor that can lead to cloacal prolapse, a condition in which the outer end of the reproductive tract fails to retract following oviposition. Normally, the shell gland (the lower part of the hen’s reproductive tract, the oviduct) is momentarily everted. However, sometimes the oviduct does not retract immediately after the egg has been laid, leaving a small portion to rest outside of the cloacal opening. The prolapsed part of the oviduct can become pecked at by cage-mates, leading to hemorrhages, infection, cannibalism, and possibly even death. The provision of a nest box, as is practiced in non-cage housing systems, minimizes visibility of the cloaca during oviposition, reducing the likelihood that laying hens become victims of cloacal cannibalism.

Tumors of the oviduct can also be a problem for laying hens selectively bred for high egg production. Adenomas (benign glandular tumors) and adenocarcinomas (malignant glandular tumors) are commonly found in commercial laying hens, possibly due to prolonged exposure of the oviduct to steroid sex hormones controlling egg production.

Osteoporosis

Bone is the metabolic reservoir for calcium used in egg shell production. The calcium requirement for hens’ extremely high rate of lay is immense, and moving calcium from bone to egg shell leaves the birds prone to osteoporosis, subsequent bone fragility, and bone fractures. Osteoporosis due to bone mineral depletion is exacerbated by the inability to exercise in a cage. One study comparing different housing systems found that, on average, caged hens made stepping motions 72 times each hour, compared to 208 times each hour in non-cage systems.

† For more information, see “An HSUS Report: Welfare Issues with Selective Breeding for Production in Egg-Laying Hens” at www.hsus.org/farm/resources/research/practices/selective_breeding_eggs.html.
times for uncaged birds in a perchery system. Similarly, wing movements were almost non-existent in birds confined in cages compared to those reared in the perchery.\(^{143}\) Studies have demonstrated that restriction of movement, especially the thwarting of normal behavior such as stepping and wing-flapping, is the primary cause of bone fragility for laying hens\(^ {144,145}\) and that exercise improves bone strength.\(^ {146}\) Many studies have found that alternative, cage-free housing systems lead to improved bone strength.\(^ {147,148,149,150,151,152}\)

Osteoporosis leaves the laying hen’s fragile skeletal system prone to bone fractures. The Scientific Panel on Animal Health and Animal Welfare,\(^ \dagger\) an independent body that provided scientific advice to the European Commission, noted that the prevalence of bone fractures that hens sustain during the laying period appears to be increasing.\(^ {153}\) Studies conducted during the 1990s estimated that the incidence of bone fractures for caged laying hens was 0-15\%,\(^ {154,155,156}\) while more recent studies report 11-26\%.\(^ {157,158}\) In a study published in 2003, bone fractures were the main cause of mortality in caged hens.\(^ {159}\) Hens are also more prone to bone breakage during depopulation, when they are removed from their cages at the end of their productive life. A 2005 study reported that nearly 25\% of caged hens suffered broken bones during removal from cages.\(^ {160}\) Early studies from 1989 and 1990 report similar to slightly lower rates of newly broken bones in hens depopulated at the end of the laying period, with estimates of 16-24\%.\(^ {161,162}\) If hens are transported, unloaded, and shackled for slaughter, the proportion of birds with broken bones increases, and studies have reported that approximately 30\% of hens have new bone fractures following this process.\(^ {163,164}\)

Fatty Liver Hemorrhagic Syndrome (FLHS)

FHLS is characterized by excessive deposits of fat in the hen’s liver and abdomen. The liver softens and becomes more easily damaged; if the fat oxidizes, blood vessels in the liver may rupture, resulting in massive bleeding and death.\(^ {165,166}\) Caged laying hens on high-energy diets are the most frequently affected by FLHS,\(^ {167,168}\) which is a major cause of mortality in commercial flocks.\(^ {169}\) Numerous sources suggest that restriction of movement and lack of exercise, inherent in battery-cage systems, are factors that predispose the birds to this disease.\(^ {170,171,172,173}\)

Cage Layer Fatigue

Cage layer fatigue is “virtually unheard of” in laying hens who are not raised in cages. First identified when flocks were moved into cages during the advent of intensive egg farming in the 1950s, the disease continues to be a “major issue”\(^ {174}\) within the industry. Cage layer fatigue is related to osteoporosis in that it is a consequence of skeletal depletion due to high, sustained egg output.\(^ {175}\) The skeletal system of hens suffering from the disease can become so weak that the birds become paralyzed. Affected hens may have fractured thoracic vertebrae associated with compression and degeneration of the spinal cord.\(^ {176}\) However, if they are removed from their cages and allowed to walk normally on the floor (i.e., if they are allowed to exercise) and are given feed and water, some may recover spontaneously.\(^ {177,178,179}\) Unattended birds will die from dehydration and starvation in their cages.\(^ {180,181}\)

Injurious Pecking

Feather pecking is an abnormal behavior that is a continuing welfare problem in poultry production,\(^ {182}\) because it causes pain from having feathers pulled,\(^ {183}\) results in body heat loss,\(^ {184,185}\) and can expose bare

\(^ \dagger\) “In May 2003, the five Scientific Committees providing the [European] Commission with scientific advice on food safety were transferred to the European Food Safety Authority (EFSA)...These Committees [including the Scientific Committee on Animal Health and Animal Welfare], composed of independent scientists, were established in November 1997 by Commission Decision 97/579/EC.” See: http://ec.europa.eu/food/commissions/scientific/index_en.htm.
skin to injury. Severe feather-pecking can lead to cannibalism and high mortality. Feather-pecking is influenced by many aspects of the environment and the genetic background of the hen, and is notoriously unpredictable. However, crowding, barren environments, and lack of loose litter or other foraging materials are important contributing factors to injurious pecking. Some hen strains are more likely to develop the behavior than others, in particular, the medium-heavy brown hybrid birds. Most egg producers beak-trim birds, as discussed above, to help reduce injury and mortality, but the mutilation impairs welfare, presenting a challenge best articulated by Duncan:

[N]eural and behavioral evidence suggests that beak trimming reduces welfare through causing both acute and chronic pain. The problem is that beak trimming is carried out for the very good reason of preventing or controlling feather pecking and cannibalism, which can themselves cause great suffering. Faced with this dilemma, what are producers to do? If they do not trim beaks, then feather pecking and cannibalism may cause enormous suffering. If they do trim beaks by conventional methods, the birds will suffer from acute and chronic pain…It is known that feather pecking has hereditary characteristics…and that its incidence may have been increased by unintentional genetic selection….It therefore seems likely that the long-term solution to this problem will be a genetic one…Chopping off parts of young animals in order to prevent future welfare problems is a very crude solution.

Forced Molting

Chickens molt their plumage annually in a process of feather loss and re-growth that can take several months. During the natural molting process, hens may go out of lay completely or lay only very few eggs. Thus, depending on economic factors affecting the marketplace, such as egg price, hens used for commercial egg production are either depopulated and replaced with younger pullets after a year, or they may be kept for a second egg-laying cycle following a forced molt. Force-molting speeds up the natural molt process and causes a temporary regression of the reproductive tract and cessation of egg-laying.

In starvation force molt regimes, feed is withheld for up to 14 days and may be combined with 1-2 days of water deprivation, along with a decrease in daylight hours. During a forced molt, hens may lose up to 35% of their body weight. When feed is removed, hens exhibit a classical physiological stress response, as well as signs of “extreme distress such as increased aggression and the formation of stereotyped pacing.”

The practice of force molting by feed withdrawal has been widely questioned throughout the world. Duncan considers the practice “barbaric,” as it can double the mortality of the flock, and leads to “great suffering.” In 2011, The Animal Welfare Board of India issued an order to the egg industry, banning starvation force molt regimes, noting that the practice is in violation of India’s Prevention of Cruelty to Animals Act of 1960. Force molting by total feed withdrawal is no longer permitted in Australia and Europe, and is uncommon in the United States. Over 80% of all U.S. produced eggs meet the United Egg Producers (UEP) guidelines for animal management, and these standards require that feed is provided during the molt using a specialized diet.

Non-feed withdrawal force-molt diets use low-nutrient feeds made largely from insoluble plant fibers or from bulking agents such as corn, wheat middlings, or alfalfa.

Despite recognition by the scientific community that force molting by starvation is detrimental to animal welfare, and the fact that research and implementation of alternatives have eliminated the practice of starving birds on many farms, feed withdrawal to induce a molt is still common in many countries. For example, in Brazil force molting is widely used on commercial farms because depriving hens of feed is cost efficient. Feed-withdrawal forced molting is also practiced in many other countries including India.
There are serious public health implications associated with this practice. Under “extreme distress” and weakened from hunger, force-molted birds are extremely susceptible to infection. The industry has known for well over a decade that forced starvation molting dramatically increases the risk of hens laying *Salmonella*-infected eggs. Normally it may take 56,000 *Salmonella* bacteria to overcome a bird’s immune system. Starvation molting makes hens so immunocompromised that less than 10 bacteria—rather than 56,000—can trigger infection. Molted hens then shed significantly more bacteria and are twice as likely to lay *Salmonella*-infected eggs. Given the fact that this practice can increase *Salmonella* susceptibility by a factor of 10,000, why does the industry continue to put consumers at risk for a potentially fatal infection? Poultry specialist Donald Bell, who recommended the starving of hens for up to two weeks, stated: “The first and most important reason given is that molting improves profits….”

Catching, Transport, and Slaughter

Although bred for high egg output, laying hens cannot sustain metabolically taxing levels of egg production indefinitely. Chickens have a natural lifespan of 5-8 years and can live up to 30 years. However, after 1-2 years of intense egg production, so-called “spent” hens are killed on-site or transported to slaughter plants. For flocks to be transported to slaughter, teams of catchers manually remove the birds from cages, typically grabbing hens by one or both legs, pulling them from cages, and carrying 2-4 birds upside-down per hand. Birds may be inadvertently hit against the cage opening, feed trough, or other objects as they are removed. On average, hens removed from battery cages are passed from handlers 3-5 times before they are crated and loaded onto trucks.

This process is known to be stressful for chickens, as there is a rise in corticosterone levels when birds are handled, crated, and transported. The battery cage is poorly designed for removal of hens, and limbs and appendages may be torn when the birds are taken out of the enclosure. Duncan states that “the combination of these three factors—fragile skeleton, poorly designed cage, and low value—results in an unacceptably high injury level” during removal from the cage for transport. Bones weakened by osteoporosis and inactivity are prone to painful bone fractures and skeletal trauma. Freshly broken bones occur often, mainly as a consequence of human handling. In one study, 29% of spent hens had broken bones after transport and shackling for slaughter.

Slaughter practices, particularly for spent hens, vary between countries and within countries, depending on the size and scale of production.

Some hens may be killed on the farm either for food production or for disposal once egg production wanes. Small batches of birds may be killed using one of several methods: Commonly, birds are held in a bleeding cone while the throat is cut. In another method, the butcher will “wring the bird’s neck”—that is, swing the bird in a 360-degree circle by its head until dead. A further technique is to break the bird’s neck by holding both legs of the bird in one hand and the neck in the other, and then stretching the chicken while bending the head backwards until the neck is dislocated.

Some hens are transported to a live market for sale instead of being slaughtered on the farm or in an automated, commercial-scale processing facility. This occurs where local tradition creates a demand for freshly killed birds. In live-animal markets (wet markets), birds are held in small stacked cages or tethered. When purchased, the birds may be killed on site or taken home to be slaughtered. In Hong Kong, for example, 100,000 live birds are traded in wet markets per day.

Where poultry slaughter is automated, hens may be stunned before slaughter using an electrified water-bath system. In these large-scale, commercial operations, chickens are hung upside-down in shackles and
conveyed through an electrified water-bath. Their heads make contact with the charged water and current runs through their body to their feet in the shackles, immobilizing them while they are next conveyed past an automated knife. Their throat is cut, and they die from exsanguination (blood loss). 247

At medium-scale operations, where 1-50 birds are slaughtered per day, chickens may be stunned before being placed up-side down into cone-shaped holders. In “bleeding cones” the head of the bird is pulled downward, through the bottom end, and the throat is exposed for neck cutting while the cone restrains the bird. In some slaughter operations, birds may be electrically stunned with a hand held stunner only after being placed into bleeding cones. 248

In certain cultures it is not permissible to stun an animal before killing. The live bird is suspended, killed, and bled by a throat cut. 249

Conclusion

The situation for the vast majority of hens in the commercial egg industry is dire, but movement to higher welfare production methods is occurring. Alternative, cage-free housing, such as aviaries and percheries, have greater potential to provide higher welfare of hens, and the egg industry is increasingly employing these production systems. Voters are also calling for improvements. In November 2008, the U.S. State of California passed by a nearly two-to-one margin a state-wide ballot measure that disallows battery cages for egg-laying hens, as well as crates for gestating pigs and calves raised for veal, effective January 1, 2015. 250,251,252 Since then, the U.S. states of Michigan and Ohio have moved to restrict the use of battery cages. 253,254 The scientific basis for moving away from barren battery cages is extensive. In 2006, a comprehensive analysis of hen welfare in various housing systems was published by the LayWel research project, funded by the European Commission and several member countries of the European Union. This project was a collaborative effort among working groups in seven different European countries that examined data collected from 230 different laying hen flocks. 255 The review noted that “[c]onventional cages do not allow hens to fulfil behaviour priorities, preferences and needs for nesting, perching, foraging and dustbathing in particular. The severe spatial restriction also leads to disuse osteoporosis” and determined that “[w]ith the exception of conventional cages, we conclude that all systems have the potential to provide satisfactory welfare for laying hens.” 256 All countries in the European Union are slated to phase out the use of barren battery cages by January 1, 2012. 257

Indeed, restrictively confined in barren, crowded battery cages, laying hens suffer from behavioral deprivation, metabolic and reproductive disorders, and broken bones. They also experience painful beak-trimming, careless handling, and inhumane slaughter. Innovative technology and systems for housing, transporting, 260 and slaughtering chickens exists that could greatly improve the welfare of laying hens if more widely adopted within the industry. Further, selective breeding for skeletal strength 261,262 and reduced propensity to feather peck 263 would further improve the welfare of hens in commercial egg production. Scientific inquiry has clearly shown that battery cages are inappropriate environments for egg-laying hens and that additional improvements are needed to ensure the welfare of hens in the egg industry.

106 Knowles TG and Broom DM. 1990. Limb bone strength and movement in laying hens from different housing systems. The Veterinary Record 126(15):354-6.

Knowles TG and Broom DM. 1990. Limb bone strength and movement in laying hens from different housing systems. The Veterinary Record 126(15):354-6.

Knowles TG and Broom DM. 1990. Limb bone strength and movement in laying hens from different housing systems. The Veterinary Record 126(15):354-6.

Animal Welfare Board of India. March 9, 2011.

Knowles TG and Broom DM. 1990. Limb bone strength and movement in laying hens from different housing systems. The Veterinary Record 126(15):354-6.

Humane Society International and its partner organizations together constitute one of the world’s largest animal protection organizations — backed by 11 million people. For nearly 20 years, HSI has been fighting for the protection of all animals through advocacy, education, and hands-on programs. Celebrating animals and confronting cruelty worldwide — On the web at hsi.org.

Last updated in March 2011