The emergence and worldwide spread of the COVID-19 pandemic has had an overwhelming effect on both human health and the global economy. Understanding how this disease first arose should be of critical concern to governments around the world. Identifying, and addressing, the source of COVID-19 may be crucial in preventing the next pandemic.

COVID-19 is caused by a virus, SARS-CoV-2, that probably originated in bats. It is unlikely, however, that bats were directly responsible for human infection. Its transference to humans, through an as yet unidentified intermediate host species, has been linked to the sale of wild animals for human consumption in a wildlife market in China. SARS-CoV, a very similar coronavirus responsible for the outbreaks of Severe Acute Respiratory Syndrome (SARS) from 2002 to 2004 which resulted in 774 human fatalities, also originated in bats and is known to have been transmitted to humans through contact in another Chinese wildlife market with an intermediate host species, the Himalayan palm civet (Paguma larvata). Had wildlife markets, which were temporarily closed after the SARS outbreak, remained closed, the COVID-19 pandemic might never have occurred.

Animal-based diseases (zoonoses) account for an estimated 73% of all emerging infectious diseases affecting humans. Wildlife markets of the type linked to both SARS and COVID-19, where many species of wild animals are crowded together under unhygienic and stressful conditions and frequently slaughtered on the premises, provide ideal circumstances for the spread of zoonoses. These include diseases caused by coronaviruses transferred to humans through a range of intermediate host species. Large-scale urban wildlife markets in China are a recent phenomenon. Similar markets are widespread in other eastern Asian countries, and the sale of wild meat, with similar associated risks of disease, is widespread in many other parts of the world.

China has already issued a decision banning further sales of wild animals for human consumption, though the terms of the decision remain ambiguous. Humane Society International recommends that all countries with wildlife markets (including those selling live wild animals or their parts for food, pets, or other purposes) permanently ban, or severely limit, wildlife trade, transport and consumption. Any ban or limitation on wildlife trade should, based on the evidence in this white paper, include permanent closure of wildlife markets, particularly those selling wild mammals and birds (including
those that are farmed, such as fur-bearing animals, or captive-bred), the chief sources of coronaviruses and other pathogens transmissible to humans. This ban should also apply to import, export and internal transport of live wildlife or wildlife meat intended for sale in wildlife markets.

Bans on wildlife markets can be put in place immediately, and should be adopted by all relevant governments as part of their strategy to reduce the likelihood of the emergence of further pandemic diseases. We also recommend that these bans be accompanied by support, including technical and financial if needed, for former traders leaving the markets, as well as country-appropriate public education campaigns to reduce the demand for wild animals sold as food. We present survey evidence that buyers in China and elsewhere are already likely to respond favourably to such initiatives.

Introduction

COVID-19 was first reported, as four unexplained cases of pneumonia, on 29 December 2019 in the city of Wuhan, Hubei Province, China. By 31 December the number of identified cases had risen to 27. Most of the patients were stall workers at the Huanan (Southern China) Seafood Wholesale Market, in which one section reportedly sold, in addition to seafood and other items, “animals such as birds (chickens, pheasants), bats, hedgehogs, marmots, tiger frogs, and snakes, as well as organs from rabbits and other animals.” The Wuhan Municipal Government closed the market on 1 January 2020, and as of this writing it has not reopened.

On 7 January 2020, the Chinese Center for Disease Control and Prevention (China CDC) officially announced that the outbreak had been traced to a novel coronavirus. On 26 January, China CDC announced further that it had isolated the new virus (then re-
ferred to as 2019-nCoV but now renamed SARS-CoV-2) from 33 of 585 environmental samples taken on 1 and 12 January at the Wuhan market. Thirty-one of the 33 positive samples were collected from the western end of the market, where booths trading in wildlife were concentrated.

Despite some suggestions to the contrary (including outlandish, and debunked, conspiracy theories that proposed that the virus was a bioweapon), genetic studies have shown that SARS-CoV-2 almost certainly originated in bats. The questions of the exact source of the virus, and the pathway by which it was first transmitted to humans, have, however, not been entirely settled. The virus, or some form of it, may have been circulating in the human population before the first reported cases. Some patients, who apparently had contracted the disease by the beginning of December, had no known association with the Wuhan market. The initial human infection may have happened elsewhere, in November or even earlier. However, the market almost certainly played a role in the subsequent transmission of the disease, even if, as has been suggested, it may have been first contaminated by a human victim who contracted the virus from an animal elsewhere.

As was the case with SARS (see next section), the virus may not have been transmitted directly from bats to humans. By late December most of the bats in the Wuhan area should have been hibernating. No bats were being sold at the time in the Wuhan market (it is unclear if bats were on sale there earlier in the year). The virus is closely related to coronaviruses found in bats (and in particular to Bat/Yunnan/RaTG13 CoV, a virus detected in Yunnan Province, China, in the intermediate horseshoe bat (Rhinolophus affinis)). However, it is not identical to them. This suggests that SARS-CoV-2 is a new virus that arose through a recombination event — that is, an exchange of genetic material between a bat virus and a similar virus from another animal species. Recombination events occur frequently in coronaviruses, and the same process probably occurred during the evolution of SARS. The recombinant virus probably reached humans via transmission from the second species, which was first infected by the bat coronavirus and subsequently served as an intermediate source for human infection.

This intermediate source has not been identified. It has been suggested that it may have been a pangolin (Manis sp.), though the scientific evidence for this is still in dispute. Pangolins are the most heavily trafficked mammals in the world, and have been repeatedly smuggled into China where they are valued for food and supposed medicinal purposes. Coronaviruses related to SARS-CoV-2 have been identified from smuggled Sunda pangolins (Manis javanica) seized in southern China. A study of amino-acid sequences in coronavirus S-proteins (the proteins that form the distinctive crown-like spikes on the viral surface, and are apparently crucial for transmission between species) showed that the S-proteins in the new virus are extremely similar to those in coronaviruses found in pangolins. It is still not clear, however, whether pangolins are intermediate hosts of SARS-CoV-2 or natural carriers of a closely-related coronavirus, or whether the pangolin coronavirus, whatever its origin, might be transmissible to humans.

Whatever the precise route of the transmission may have been, there seems to be little question that the Wuhan market played an important — and perhaps the primary — role as a common exposure point...
in the spread of COVID-19 to humans. The recombination event could presumably not have occurred unless the original bat coronavirus had had an opportunity to infect the intermediate species, whether that species was a pangolin or something else. Its best opportunity to do so may have been in the crowded and unsanitary conditions, such as those the Wuhan market, that prevail where wildlife is butchered and sold. (This could have happened whether bats were actually sold, or if they entered on their own and defecated there20). Even if the new, recombinant coronavirus originated elsewhere, the Wuhan market was a place where it was amplified and spread.31 It was certainly present in the western end of the market — however it arrived there — by the beginning of 2020.

The Lessons of SARS

We still have much to learn about the origin and spread of COVID-19. However, the best way to understand the risk of a similar pandemic disease occurring again may be to consider the much-better-studied, and extremely similar, case of SARS. SARS, “the first known major pandemic caused by a coronavirus,”32 caused 774 deaths33 and cost the global economy more than US $50 billion in 2003 alone.34 As a study in the New England Journal of Medicine noted, “The parallels between the two SARS viruses are striking, including emergence from bats to infect animals sold in live-animal markets, allowing direct viral access to crowds of humans, which exponentially increases opportunities for host-switching.”35

Like COVID-19, SARS was first detected in a patient suffering an unusual form of pneumonia — in this case, in a 45-year-old man from Foshan, Guangdong Province, China, who developed symptoms on 16 November 2002. According to a 2004 study36, “A high proportion (9/23, 39\%) of early cases were food handlers … Of the nine early cases in food handlers, seven were restaurant chefs working in township restaurants (where a variety of animals were slaughtered on the premises), one was a market produce buyer for a restaurant, and one was a snake seller in a produce market (where a variety of live animals were offered for sale).”

It was realized early on37 that SARS was caused by a novel coronavirus, later named SARS-CoV. It took longer to determine that the virus had an animal origin,38 almost certainly through a live animal market. A team of researchers taking samples from a live animal market in Shenzhen in April/May 2003 isolated viruses similar to SARS-COV from six Himalayan palm civets (\textit{Paguma larvata}), a raccoon dog (\textit{Nyctereutes procyonoides}) and a Chinese ferret-badger (\textit{Melogale moschata}). Five out of ten civet dealers at the market were found to have antibodies to the virus. The researchers concluded that “the markets provide a venue for the animal SCoV-like viruses [i.e. SARS-CoV-like viruses] to amplify and to be transmitted to new hosts, including humans, and this is critically important from the point of view of public health.”39

In response, Chinese authorities imposed “a temporary ban on the hunting, sale, transportation and export of all wild animals in southern China and also quarantined all civets reared for human consumption in many civet farms across the area.”40 The Chinese government reportedly confiscated 838,500 wild animals from markets in Guangdong.41 The ban was, however, lifted in August 2003, only to be followed by a further outbreak of SARS in Decem-
ber 2003 and January 2004. In response, Guangdong provincial officials closed the markets\(^42\) again (though, again, only temporarily) and conducted a massive cull of palm civets and other farm and market animals\(^43\). However, researchers later failed to detect the coronavirus in wild or farmed civet populations\(^44\). This failure suggested that civets, like the pangolins implicated in the spread of COVID-19, were only intermediate hosts for the virus\(^45\) and had likely become infected either during transportation or after being brought to market. As mentioned above the civet virus likely arose by recombination, an event that may have happened in 1995\(^46\) or later.\(^47\) The researchers who identified the virus in civets at the Xinyuan Animal Market in Guangdong noted that “It seems that palm civets are extremely susceptible to SARS-CoV and that the Xinyuan animal market was likely the source of infection, where the virus was amplified, circulated, excreted through the respiratory and intestinal tracts of palm civets, and subsequently disseminated to cause sporadic disease in humans,” and concluded that “when SARS-CoV-like virus arrives at an animal market, the majority of palm civets, if not all, will become infected, and that the virus will evolve rapidly in animals to cause disease.”\(^48\)

The hunt for the original carrier — the reservoir species — then expanded to the wild, where a SARS-CoV-related virus was discovered in Chinese horseshoe bats (Rhinolophus sinicus) in Hong Kong.\(^49\) Since then, further evidence\(^50\) has supported the conclusion that bats, and in particular horseshoe bats (Rhinolophidae), were the original hosts for SARS-CoV. The closest amino acid match to human and civet viruses was found in the greater horseshoe bat (R. ferrumequinum). A five-year study of multiple species of horseshoe bats roosting in a single cave in Yunnan Province, China, identified all of the building blocks of the SARS virus in anal swabs and fecal samples taken from the bats in the cave. The study, published in 2017, concluded that “While we cannot rule out the possibility that similar gene pools of SARSr-CoVs [SARS-related coronaviruses] exist elsewhere, we have provided sufficient evidence to conclude that SARS-CoV most likely originated from horseshoe bats via recombination events among existing SARSr-CoVs.” Noting that other forms of the virus were also circulating among bats in the region, the authors warned, prophetically, that “the risk of spillover into people and emergence of a disease similar to SARS is possible.”\(^51\)

This was by no means the first warning that a new coronavirus disease could emerge at any time. However, although market closures “effectively ended”\(^52\) the SARS epidemic, the trade re-emerged and animals that are known to carry coronaviruses, such as civets, continued to be farmed and sold in wildlife markets.\(^53\) In the years since the first outbreak of SARS, one team of researchers after another has warned that controlling or stopping the sale of wild animals in crowded markets was key to preventing another SARS-like outbreak. The authors of a 2007 study\(^54\) of SARS concluded that “The presence of a large reservoir of SARS-CoV-like viruses in horseshoe bats, together with the culture of eating exotic mammals in southern China, is a time bomb. The possibility of the reemergence of SARS and other novel viruses from animals or laboratories and therefore the need for preparedness should not be ignored.”

Today, as COVID-19 continues to spread around the world, the consequences of ignoring such warnings have become plain to see.
Bats and Disease

The scale of the problem raised by COVID-19 goes well beyond the case of a few wildlife markets in one country. SARS and COVID-19 are just two examples of zoonoses — diseases that have spread to human beings from other animal species. It has been estimated that zoonoses account for 58% of all known human pathogens, and for 73% of all emerging infectious diseases affecting humans, including such serious illnesses as HIV-AIDS and Ebola hemorrhagic fever. A 2008 survey noted that “Pathogens associated with illegally traded wildlife span the gamut of taxonomic origins, affect most vertebrate taxa, and can jump species barriers affecting wildlife, domestic animals (e.g., Newcastle disease), and humans (e.g., psittacosis, salmonellosis, retroviral infections).”

Bats have been identified as the source for a wide range of zoonoses. Bats are regarded as either delicacies or of medicinal value in a number of countries, particularly in East and Southeast Asia, the Pacific Islands and Sub-Saharan Africa including Madagascar. In Ghana, straw-coloured fruit bats (Eidolon helvum) are hunted in large numbers (over 128,000 annually in the south of the country alone) despite being potential hosts for a number of pathogens including the Ebola virus. The researchers who first isolated SARS-like coronaviruses in Chinese horseshoe bats noted that bats are a “reservoir of emerging zoonotic viruses, including rabies virus, lyssavirus, Hendra and Nipah viruses, St. Louis encephalitis virus, and fungi such as Histoplasma ...” The feces of bats (excrementum vesperilionis 夜明砂) are used in traditional Chinese medicine. The Chinese and Manadonese populations of Malaysia and Indonesia consider bat meat [to be] a delicacy. Many Chinese [people] also believe that eating bat meat can cure asthma, kidney ailments, and general malaise. A global survey of bats as bushmeat reported, with respect to bat consumption in China, that “In some areas bats are rarely consumed and always less so than other bushmeat species. In southern China however, bat meat is traded locally and regionally; it appears on some restaurant menus in Guangdong and Guangxi provinces, especially in Wuming County. Bats were seen in markets during surveillance linked to the SARS epidemic in 2003.”

In particular, bats in most of the 18 extant bat families are known repositories for a wide array of coronaviruses. In field studies, coronaviruses have been found in both fecal and respiratory samples from bats of the genus Miniopterus, although the bats themselves were asymptomatic. A study of thirteen species of bats in Hong Kong detected eight different coronaviruses in anal, but not in nasopharyngeal swabs. A 2017 study identified bats “as the major evolutionary reservoirs and ecological drivers of CoV diversity.” This is partly because bats, with over 900 species, are themselves highly diverse. Bat coronaviruses have been identified on every continent but Antarctica, where bats do not occur.

Bats are the putative source of four of the known human coronaviruses, including HCoV-229E, one of the viruses responsible for the common cold. In addition to SARS and COVID-19, bats appear to have been the original source of Middle East Respiratory Syndrome (MERS), a coronavirus disease that emerged in the Middle East in 2012. MERS is thought to have spread to humans through intermediate infection of domestic dromedary camels in the Horn of Africa, rather than through multi-species
wildlife markets.

It may appear that simply banning the sale and consumption of bats would be sufficient to prevent further outbreaks. There have already been misguided calls to eliminate bat populations in the wake of COVID-19. These must be resisted, and information about the critical ecosystem roles that bats fulfill should be a part of public education programmes. Bats play an important ecological role, particularly in tropical forests, and are essential for the pollination of crops, such as durian. Bats are important controllers of insect pests, and their value to agriculture in the United States alone has been estimated at 22.9 billion USD a year. Noting that “The exaggeration of bats’ negative traits without regard for their positive ones could ultimately lead to their needless and intentional elimination”, one Wuhan-based researcher concerned about negative image of bats in China following the COVID-19 outbreak warned that “The need for public education about bats, including their positive and negative impacts, is urgent and vital to their conservation.”

Such views, in addition, ignore the findings that in all three coronavirus-based epidemics in this century — SARS, MERS and COVID-19 — the infection was probably passed to humans through an intermediate species; that the intermediate host was a different mammal, only distantly related to the others, in each case; that we do not know when and how the infection of the intermediate species occurred; and that bats could have transferred the virus without being on sale in markets themselves. Any action taken against wildlife markets that does not apply to all mammal and bird species sold there (as these taxa are the known hosts of coronaviruses) risks missing the potential intermediate host for the next epidemic.

Not all viruses are equally able to adapt to a wide range of host species (that is, to have a high host plasticity). This adaptability is probably necessary for a virus to transfer from a bat or some other reservoir species to an intermediate host. A 2015 study found that viruses with high host plasticity were more likely to be transmissible from one human to another, and that viruses transmitted to humans from places that confined different species of animals in close proximity were more likely to have high host plasticity. In other words, the kinds of viruses transmitted to humans in a mixed-species market are more likely to be able to infect other humans than are viruses from other sources.

Intermediate hosts may, in fact, be necessary for successful transfer of at least some bat coronaviruses to human beings. A 2008 study suggested that the SARS-related coronaviruses in bats may not be able to infect humans directly, but may require mutation of the spike protein in an intermediate host before they can interact with receptor enzymes in human tissue. More recently, other bat coronaviruses have been identified that are able to infect human cells. However, this ability apparently varies among bat coronaviruses and the identity of a future intermediate host for a new coronavirus is impossible to predict. The major focus of control should therefore be on places where the greatest range of potential intermediate host species is likely to occur and where the greatest opportunity exists for transfer of any viruses they may carry to human recipients. Mixed-species wildlife markets fit this description exactly.
Wildlife Markets

Large-scale wildlife markets of the type involved in the spread of SARS and COVID-19 are a comparatively recent phenomenon. Wildlife markets spread rapidly in the 1990s as China increased in affluence. They cater, according to a survey published in 2008, mostly to a young, well-educated and recently affluent urban clientele that sees the use of wild animals as a status symbol and as part of a fashionable lifestyle. More than 50% of wildlife consumers interviewed for this study “said they consume wildlife because they find the taste delicious. Those who tried wild animals because they felt they were rare represent 23.3% of the surveyed, while 20.9% of people indicated they tried wildlife out of curiosity. Those who tried wild animals for nutritional and nourishment purposes accounted for 19.3%.”

Another 2008 study noted that “Wildlife is expensive (US$30 per kg, compared to US$1 for chicken), and there is evidence that demand and consumption have increased in recent years as economic conditions in China have improved. Why do people eat wildlife? Usually it is for perceived health benefits. For example, Paguma larvata is typically eaten in winter when fresh fruit is often unavailable. It is believed that eating the animal (also known colloquially as the fruit fox or flower fox because of its dietary preferences) provides the same health benefits as eating fruit. In markets, wild-caught P. larvata meat attracts a price premium because people believe it is more health-giving and tastes better than its grain-fed farmed counterpart.”

A 2014 survey of markets in seven cities in Guangdong and Guanxi provinces documented sales of more than 7,000 individuals of 97 animal species. The researchers who first identified coronaviruses in palm civets at the Xinyuan animal market reported that “The zoological biodiversity of the Xinyuan animal market was large, including live donkeys, calves, goats, sheep, piglets, American minks, raccoon dogs, farmed foxes, hog badgers, porcupines, nutria, guinea pigs, rabbits, and birds. Animals were presented in small wire cages piled atop one another, which highly favors the transmission of any pathogens present. The mixing of wild and domestic animals of various species and geographic origins likely further increased the probability of pathogen transmission.”

The risk of transfer of infectious diseases in such a market, already high due to significant stress compromising the animals’ immune systems and because of the number of species being maintained in close proximity to each other, is further increased by often unhygienic conditions. Wildlife markets “are traditionally places that sold dead and live animals out in the open and where blood and other body fluids originating from different animal species represent an exceptional source for the spread of infectious diseases and the jump of species barriers by pathogens.” Prior to government action after the SARS outbreak, “animals were often housed together, exposed to one another’s waste, and sometimes even fed to one another. For a virus or bacteria capable of jumping between species, the markets had provided the perfect place to reproduce.” One observer visiting the wildlife market in Foshan City in March 2015 observed that “All of the animals are mixed together in each stall. There was blood and faeces everywhere. Some of the animals looked quite sick, with the exception of the goats. ... Shops seemed to specialize in hav-
ing as large a variety as possible. Turtles and snakes were mixed in with poultry, boars, pigs, civets, nutria, bamboo rats, regular rats (that looked particularly ill). ...There were 6 civets in the market. One in a stall with chickens, ducks, pigs, cats and snakes. Its fur looked matted and dirty.89

It is little wonder that the authors of a review of SARS-CoV-2 concluded that “live-animal markets such as in China could provide chances to animal CoVs to get transmitted to humans and these markets may act as critical places for the origin90 of novel zoonotic pathogens and pose high public health risks during an outbreak.”91

Markets in other Asian countries present similar problems. According to a 2005 review, the wildlife markets of Asia “are a mixing bowl of domestic animals, wildlife from near and far, and people. Most often, sanitation and hygiene are very poor to nonexistent, and both people and animals are under a tremendous amount of stress, lowering immuno-competency. Those in the marketplace are handling live birds and butchering others without any personal protection and often live, eat, and sleep in their shops amongst their animals for sale. This serves as an excellent environment in which pathogens can mutate and jump into novel species.”92 Wild bird markets in Vietnam have been implicated in the spread of the Highly Pathogenic Avian Influenza (HPAI H5N1) virus.93 Surveys of seven wildlife markets in Lao PDR, where wildlife markets first appeared in the 1980s, between 2010 and 2013 identified mammals on sale known to be capable of hosting 36 zoonotic pathogens.94 A recent literature analysis using TRAFFIC survey data from wild meat restaurants, roadside stalls and markets in Malaysia95 identified 51 zoonotic pathogens (16 viruses, 19 bacteria and 16 parasites) that could be hosted by wild species found on sale.

The Need for a Ban

If SARS, COVID-19 and other zoonoses, and the warnings that epidemiologists have been issuing for years96 have taught us anything, it should be that the existence of wildlife markets in their current form — particularly the large, unhygienic, mixed-species markets associated with both SARS and COVID-19 — is a serious threat to human health on a global scale. That is why Humane Society International supports banning or severely limiting all trade, transport and consumption of wildlife, and why this paper recommends that governments around the world take immediate action to close wildlife markets selling wild mammals and birds, the chief sources of coronaviruses and other pathogens transmissible to humans, within their borders. This ban should also apply to import, export and internal transport of live wildlife or wildlife meat intended for sale in wildlife markets.

Closing wildlife markets is not the only action that needs to be taken to prevent another zoonotic disease from developing into a global pandemic.97 Medical and veterinary practitioners have been urged to adopt a “one health” approach that considers human and animal health as a single issue.98 Calls to control the massive domestic and international trade in wild animals for food and medicine have been issued since the emergence of SARS and even earlier.99 Recently John Scanlon, former Secre-
tary-General of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), has called for a new global agreement on wildlife crime as an essential step in preventing the spread of future zoonoses, such as HIV AIDS, Ebola, SARS, MERS and COVID-19.

Important as these measures are, however, none of them can be put into place immediately or have an immediate effect. The most effective step that can be taken right now, across the board and in every applicable country in the world, is to shut down markets that sell wild animals, particularly mammals or birds that can be infected by coronaviruses, whether captured in the wild or farmed, for food or medicine or any other purpose.

Closing markets is a strategy that is known to work. In 2013, respiratory disease experts in China noted, in reference to the renewed outbreak of SARS in late 2003, that “The strong enactment of Guangdong government against rearing, sales, slaughter and transport of wildlife proved effective for the crackdown of wildlife markets and spread of SARS. Unfortunately, following remission of epidemics, the wildlife markets resumed to thrive, a consequence possibly stemming from the lack of subsequent governance and reduced public health awareness.” Noting that “the potential pathogenicity of SARS-CoV mutants arisen from gene recombination should not be underestimated”, they recommended that “Wildlife markets, in conjunction with the personnel involving in transaction, slaughter and transportation, should be made illegal and are subjected to punishment and serious warning. The laws are strongly recommended to be enforced periodically under stringent supervision.”

Some of the strongest calls for the elimination of wildlife markets have come, and are coming, from infectious disease experts within China. One recent study called for, among other actions, “completely eradicating wildlife trading.” An open letter from “a group of 19 prominent researchers from the Chinese Academy of Sciences, the Wuhan Institute of Virology and the nation’s top universities,” issued in the wake of COVID-19, called on the Chinese government to ban “the illegal consumption of wild animals.” Chinese researchers have called on their government to “seize this opportunity and permanently ban wildlife consumption,” close loopholes in existing laws and increase penalties for illegal activity, and provide financial support “to facilitate the transformation of the wildlife farming industry required by the ban, as well as made available to help transition away from the production of traditional Chinese medicine.”

On February 4, 2020, the Standing Committee of the Thirteenth National People’s Congress issued an open-ended “Complete Ban of Illegal Wildlife Trade and the Elimination of the Unhealthy Habit of Indiscriminate Wild Animal Meat Consumption.” Among other things, this decision bans “Hunting, trading or transporting for meat terrestrial wild animals that grow and reproduce naturally in the wild,” and decrees that “Illegal business premises and operations shall be shut down, sealed off or ordered to close in accordance with the law.” There have been criticisms that the coverage of the ban is not always clear. We believe that the ban should be expanded to cover all potential coronavirus-carrying mammals and birds, including those cur-
rently excluded as ‘livestock’. At the mo-
moment the exempted animals even include
the raccoon dog, one of the species that is
known to have carried the SARS virus.

Enforcement of the ban remains an
issue. There are recent reports that wild-
life markets in some cities are still operat-
ing, or have reopened, despite the ban. However, the decision is welcome and, we
believe, necessary. We urge the Chinese
government to close any loopholes that the
decision may contain, and to make the ban
permanent. The example of SARS, which re-
emerged after a ban on wildlife markets was
lifted, should be good evidence that tempo-
rary closures will not do. Nonetheless, we
urge other all governments to follow China’s
example and ban all wildlife markets, and to
do so indefinitely.

There have been warnings that clos-
ing legal markets will not end the trade but
drive it underground. These warnings ig-
nore that fact that much of the trade is un-
derground already, and that banning wildlife
markets will likely reduce it. All pangolin
species, for example, are listed on Appendix
I of CITES, making any transfer of pangolins
across borders for sale in markets — legal or
illegal — already in violation of the law in ev-
y, or almost every, country where it takes
place (noting that a few countries, such as
North Korea, remain out of CITES).

Critics argue that regulation, with
the imposition of hygiene standards and
other measures, would be a better way to
proceed. However, attempts to establish
well-regulated markets have failed in the
past. One of the largest, if not the largest,
wildlife wholesale markets in China was re-
located from Guangzhou to Taiping in 2006,
funded “by the Guangzhou City Forestry
Department, Conghua City Forestry Bureau,
and the Taiping Township Forestry Station
with an investment of RMB 30 million...The
purpose of the new market was to permit
the wholesale selling of licensed wildlife,
and it would be under strict inspection and
checks.” Despite these conditions, the mar-
ket reportedly became “a major centre for
illegal wildlife trade”, subject to repeated
raids and closures.

Truly effective regulations would
take time and care to design and put into
place, which might not be effective in pre-
venting a disease that has yet to emerge.
Permanently enforcing them would require
a considerable investment of time and re-
sources, and would, as the experience of the
Taiping market strongly suggests, probably
be unsuccessful. If we are to avoid being
cought by the emergence of a new pandem-
ic, therefore, an immediate ban is an essen-
tial first step. Effective long-term measures,
appropriate to the socio-economic and cul-
tural realities in each country, can be put into
place at a later date (bearing in mind, for ex-
ample, that bushmeat markets in Africa are
not identical to wildlife markets in China and
may require a different approach).

Closing markets will undoubtedly
have an economic effect on market traders,
many of whom may have no other oppor-
tunities to earn income. Closures should
therefore be accompanied by remedial ac-
tions such as financial support for those
transitioning away from trading and training
for alternative livelihoods. The Decision
establishing the current ban in China states
that “Relevant local people’s governments
shall provide support and guidance to af-
ected farmers to help them change their
production and business activities, and pro-
vide them with compensation accordingly.”

It is not only national governments
that can take action to ban wildlife trade
and consumption. Shenzhen, China’s fourth
largest city, will reportedly ban wildlife con-
sumption starting May 1, 2020, according to
a regulation passed by the Shenzhen Munici-
pal People’s Congress, the city’s legislature.
A resolution of the Guangdong provincial
government stiffening punishments for
poaching, trading and consuming wildlife
will go into effect on the same day.115

Such measures may be welcomed
by the traders themselves. A survey of trad-
ers selling wildlife in markets in Indonesia
found that a number of those interviewed
felt that their limited education levels gave
them no other option, and some stated that
they would leave the business if alternatives
were available. None wanted their children
or grandchildren to continue trading rather
than pursuing their education and seeking
better opportunities.116

Public Support for a Ban

The best way to prevent further
black-market trade is to accompany any
ban in markets with a public education cam-
paign focused on the need to prevent new
diseases117 by reducing demand for wildlife
products. Campaigns will vary from country
to country as appropriate, but should be sci-
ence-based, respectful of local perceptions,
and should avoid unfairly singling out mi-
nority communities with particular dietary
preferences.118

The potential for success of a prop-
erly-focused, country-appropriate cam-
paign is considerable. Consumers of wildlife
are already aware of the risks. A research
team surveying 1,596 rural residents in Yun-
nan, Guanxi and Guangdong districts in
southern China between 2015 and 2017 re-
ported119 that “When asked about animals
and disease transmission, more than half of
the study participants believed that animals
could spread disease (n=871, 56%) and were
worried about disease emergence from ani-
mals at wet [wildlife] markets (n=810, 52%).
Of those worried about disease emergence,
46% (n=370) purchased animals from wet
[wildlife] markets in the past 12 months.”

Support in China for closure of poten-
tially dangerous wildlife markets is al-
ready broader than critics may realize. A
belief that wildlife should be protected has
existed in China for some time. A 2008
survey found that “61.7% of Chinese urban
residents believe all wild animals should be
protected ... 52.6% think wild animals are
equal to human beings and both deserve
protection and respect ... [and] nearly 60% of
urban respondents think improved an-
imal welfare is related to societal develop-
ment.”120 37.5% “hold that the sanctions im-
posed by law are not stern enough, which
is why the law does not truly play its role of
prohibiting unlawful behavior.”

An online survey, conducted from 15
December 2015 to 15 January 2016, assessed
2,238 Chinese millennials’ attitudes about
wildlife consumption and perceived health-
risks. It indicated “that although this popu-
lation is currently the primary driver of de-
mand for wildlife trade in China, it may also
be the most effectively targeted with cam-
paigns to educate about zoonotic emer-
gence from wildlife reservoirs.” The sur-
vey report concluded that “Utilising social
networks as a means of distributing public
health or public service messages about the
health risks of wildlife trade and consump-
tion could yield positive results and begin to
effect change around consumption of wild-
life in China.”121

The opportunity to influence public
opinion in China (and elsewhere) may have
grown even greater with the emergence of
COVID-19. A telephone survey conducted between 1 and 10 February 2020 in Shanghai and Wuhan found that “79.0% (403) of respondents in Wuhan and 66.9% (335) of respondents in Shanghai supported permanent closure of wet [wildlife] markets (P<0.001). 95% and 92% of respondents supported banning wild animal trade and quarantining Wuhan, and 75% were confident towards containment measures. Females and the more educated were more supportive for the above containment measures.”

China is not the only country in which a public education programme could influence buyer opinion. Wildlife consumers surveyed at markets in Lao PDR in 2016 and 2017 “indicated they would stop consuming wildlife if they knew the animal was near extinction (74% of respondents), if they knew it could transmit a pathogen (71.5%), and if they knew police would fine them (92.5%).” Their consumption of bushmeat “was motivated by dietary preference and tradition rather than nutritional needs.”

Results such as these suggest that critics may be underestimating the willingness of wildlife consumers — and in particular younger, more affluent and well-educated consumers in China and elsewhere — to accept a total closure of wildlife markets in the interest of protecting human health. Had such action been taken years ago, COVID-19 might never have emerged. We should not be afraid to do so now.

9. Li Q et al., op. cit.

24. Zhang C, Zheng W, Huang X, Bell EW, Zhou X, Zhang Y. Protein structure and sequence re-analysis of 2019-nCoV genome does not indicate snakes as its intermediate host or the unique similarity between its spike protein insertions and HIV-1. 2020. doi:10.1021/acs.jproteome.0c00129
41. Cook RA. Emerging diseases at the interface of people, domestic animals and wildlife. The role of wild-
63. Lau SKP, Woo PCY, Li KSM, et al. op. cit.
78. 1. Zhao H., op. cit.

88. Cook RA, op. cit.

89. Chmura AA, op. cit.

92. Cook RA, op. cit.

112. Chmura AA, op. cit. and references cited therein

113. Giles-Vernick, op. cit.

121. Chmura AA, op. cit.

